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o

Life 1s a matter of interactions

o 2: Basic concepts on two-body interactions

 Scattering length

e Feshbach resonance

 1+1: Let’s stay together

e How to cool them

 Basic experiment

* 3: Good/Bad things come in threes

4 and more: It's time to party
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Energy conserved Internal energy converted to kinetic energy (or viceversa)
Total angular momentum conserved Total angular momentum (internal + collisional) conserved
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Scattering length
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The scattering length is classically the size of
the target

Quantum: Scattering between waves
Outgoing scattered wave decomposed in
spherical harmonics

For example:

symmetric target -> symmetric output
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Scattering length
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Identical particle
Symmetric wave-function

Only s-wave and even

The scattering length is classically the size of
the target

Quantum: Scattering between waves

spherical harmonics

‘ i @ ///////////‘ Outgoing scattered wave decomposed in

For example:

symmetric target -> symmetric output
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Interaction potential, the phase shift

0 and the scattering length
E
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Interaction potential, the phase shift
and the scattering length
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The role of the molecular potential
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x — 1/r // Interaction potential
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o 1/7° Molecular potential

Which is the connection between bound states and scattering length?
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The role of the molecular potential
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Scattering length tuning: Feshbach resonance

closed channel
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Scattering length tunin
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Remember/1: the good and the bad

For each collision there will be:

Elastic collision rate (good for evaporation)
Inelastic collision rate (not necessary bad)
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Elastic collision Inelastic collision
Energy conserved Internal energy converted to kinetic energy (or viceversa)
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Remember/2: Fermions
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Remember/2: Fermions
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Remember/2: Fermions

ldentical Fermions do not come enough
3 close to see each other below some temperature:
No collisions, no termalization
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Remember/2: Fermions

ldentical Fermions do not come enough
3 close to see each other below some temperature:
No collisions, no termalization

\ 4

Mixture of distinguishable fermion or together with a boson to allow evaporation
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There Is even more about collisions

» Scattering in pancakes and cigars (see Laurianne lecture)
e Dipolar gases (see Francesca lecture):
* beyond van der Waals interactions: Magnetic and electric dipoles
 Rydberg atoms (see Hannes lecture):
* |nteractions between
e a neutral atom and an ion

e ground state atom and a Rydberg atoms

12
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Atomic spectra

Alkal
0 -1 -

P, A
780.0 nm
794.8 nm
528
5 _~ VY 3035.73 MHz
spin-orbit hyperfine

3

14



Atomic spectra
Alkali

3 -~
oP
5 5 i
780.0 nm
794.8 nm
528
5 _~ VY \ 3035.73 MHz
spin-orbit hyperfine

5 ) Alkali-earth

14



Atomic spectra
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A diatomic molecule is an atom too many
Arthur Leonard Schawlow
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1+1

A diatomic molecule is an atom too many
Arthur Leonard Schawlow
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A diatomic molecule is an atom too many
Arthur Leonard Schawlow
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Cooling atoms and glueing
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16



1+1

Cooling atoms and glueing

% 00 o
O
O g

Cooling ‘ Z> Chemistry
Advantage: Start ultracold \ o~ QO
(@ few hundred nK). \ _—

\gfsooo K,
. | !

Challenge: Stay ultracold.

16



Weakly bound Feshbach molecules
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Why to go to the ground state?

@ + Stability of ground state molecules: We wantto | | ||*" -
reach quantum degeneracy as for atoms N N Ny e
* Very large dipole moment coming from electron BBV AD)'s
l +l charge distribution: swo ||
Long range dipole interactions = |\ e
= |
o |\
* Transfer from the weakly bound state tothe ~ Swwm | \ | 1w
ground state. B \ L

l\
"
| N\
N
| NP .
\-4.._'_'_'.-7‘——
|
| / )
\
|

» Challenges: - From very large to very small ., | y
- Stay cold \ /" X(1)
- THz Jump N

(no light, no MW, no RF) 2 s ;
O 0 O - Preserve quantum numberS [Internuclear distance [A]
- Choice not chemically reacting
molecules

18
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STIRAP
 STimulated Rapid Adiabatic Passage

@ Coherent transfer from one state to a another.

Anti-intuitive sequence of pulses (to adiabatically rotate a dark state to the target one)

l+l Bergmann;

“It’s like when you have to . 25 2P

take a bus to go to the Y
3 airport, but the fastest PUlse 2 \Pu'sm 5 0.8

way to reach the final >  Zos

destination is that the e N s ot

plane has to leave before zi
5 o o you take the bus” Transfer 9720 10 o0 10 20

Time (ps)

Stimulated Raman adiabatic passage in physics, chemistry, and
beyond

Nikolay V. Vitanov, Andon A. Rangelov, Bruce W. Shore, and Klaas Bergmann
Rev. Mod. Phys. 89, 015006 — Published 8 March 2017 19
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STIRAP

* Two (or more) very stable laser
@ (to remain in the dark state) 4| et

| Na(3s) + K(4p)
1 Ll M S ——
* Good spatial overlap between initial RN 4
and intermediate and final state RRVEE A
- 5000 |‘ ||
" " | !‘
l_l'l * Good mixing of quantum numbers = |\ Yeoh
A= |
g 10 000 ‘i‘ \\ Pump
2 '. \| Stokes

l"
15 000 \ /
\
\ R
\\ 1\ X(1) X
\ [

Implemented with 4 photons (Cs in IBK) " temudeardistance[A]

and In many other atomic systems...
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Experiments with molecules

 Changing chemical reaction speed with an E and B field

@ « Distinguishable fermions, Bosons Repulsive side-by side collisions

i ee

l_l_l \/ Chemistry!

« Indistinguishable fermions
\ Attractive head to tail collisions

] 24ux ) oo g%
%
I21

o Study of chemical reactions

000 _ 005 010 0.5 020
Dipole moment (D)
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Experiments with molecules

 Changing chemical reaction speed with an E and B field

@ » Distinguishable fermions, Bosons Repulsive side-by side collisions

% 3 gChemistr !
1+1 /

« Indistinguishable fermions
\ Attractive head to tail collisions

1 24uK | of oy
i

o Study of chemical reactions

000
Dipole moment (D)

005 010 015 020

* Recently evidences of degenerate fermi gases of KRb (Jila) and

NaK (Munich)

 Recent development: Molecules in tweezers for guantum
computation, analysis of losses with mass spectrometer...



Tuning knobs for molecules
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Advance In cooling of large molecules

Cooling
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Chemistry
(Prepare molecules)
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T=1mK
n~ 108/cms3

~
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e

Stark decelerator: very fast ground state
molecule thanks to buffer gas cooling, but one
have to brake them...

* Alkali-like molecules (one electron localised on one side)

(a)BaF

Molecular Asymmetry and Optical Cycling: Laser Cooling Asymmetric Top Molecules

Benjamin L. Augenbraun ,*" John M. Doyle,l’2 Tanya Zelevinsky > and Ivan Kozyryev3 d



Advance In cooling of large molecules

Cooling

s')

o0 "
%

Chemistry
(Prepare molecules)

/

o

T=1mK
n~ 108/cms3

~

J

e

Stark decelerator: very fast ground state
molecule thanks to buffer gas cooling, but one
have to brake them...

* Alkali-like molecules (one electron localised on one side)

(a)BaF

Molecular Asymmetry and Optical Cycling: Laser Cooling Asymmetric Top Molecules

Benjamin L. Augenbraun ,*" John M. Doyle,l’2 Tanya Zelevinsky > and Ivan Kozyryev3 d



24



Three-body: The origin of the problem

» (Classical problem has solutions only for special cases (one of the
@ participant is small, Lagrange points)

 Quantum case: 3He, deuteron and adrons. No tuning knobs

2 Two-body Potential ‘

o 0 O
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Efimov state

Efimov considered very large scattering length
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Efimoyv
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Efimov, V. (1970). "Energy levels arising from resonant two-body forces in a three-body system". Physics Letters B. 33 (8): 563—564.
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Three-body states and losses

@ * Efimov state is behind a centrifugal barrier

 We can tune entrance by changing the

scattering length (i.e. the energy of the
entering atoms)

2  What enters decay fast into low lying
molecular state

energy
A

r / /, > ‘ ‘ ‘ >
1/a

HALO

Esjg=Ex(a,®) \ | Y DIMER

o
¢
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Three-body states and losses

@ * Efimov state is behind a centrifugal barrier I

 We can tune entrance by changing the

scattering length (i.e. the energy of the
entering atoms)

2

 What enters decay fast into low lying
molecular state
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Three-body states and losses
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T. Kraemer et al (2006). "Evidence for Efimov quantum states in an ultracold gas of caesium atoms". Nature. 440 (7082): 315-318
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2+1 and Efimov state association

Li, K, Cs, Rb,
@ Rb+Cs

Energy

d_T< >
; : 2nd ET
A
1/515
Y{istET
0 ~ WO
3 100 - O
N
T 200
Py
< 300
>
§ 400
(¢)]
£ 500
S E,,, (model A)
@ 600 - E__ (model B)

Phys. Rev. Lett. 106, 143201

0 +———T—T
670 680 690 700 710 720 730 740 750

Magnetic field (G)
o O

29

Li, K, Cs
0
1/a
C-l* On

SE-10r

1E-10

SE-11f

0

200 400 600 800 1000
scattering length (a,)



2+1 and Efimov state association
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Qo

Universality
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Universality
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Universality
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Qo

Extension to four- and more body states

 Immanuel Kant: At dinner, never more than the Muses (9) or less than the Fates (3)
* [nterest to connect few to many boys state

 (Connection to high energy physics (tetra- and penta-quark)
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* Also five observed!
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Ultracold Sodium
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False vacuum




