

why are fermions interesting?

(even more interesting than bosons, but this is a matter of taste)

three strong arguments

fermion + fermion = boson

boson physics appears as a special case of fermion physics

fermions are the basic constituents of matter

electrons (solid-state systems)

neutrons, protons and quarks (hadronic matter)

universality

		u	niversa	lity	
		neutron star	white dwarf	metal (Cu)	ultracold gas
	particles	neutrons	electrons	electrons	⁶ Li atoms
	m in u	1	$5.5 imes 10^{-4}$	$5.5 imes 10^{-4}$	6
	n in m ⁻³	~ 1044	$\sim 5 \times 10^{35}$	4.2×10^{28}	~ 10 ¹⁸
	E _F	~ 70 MeV	~ 350 keV	~ 7 eV	~ 300 peV
	T _F	~ 90 GK	~ 4 GK	~ 80 000 K	~ 3 µK
٧e	J http://www science/ne	nasa. u.v/mission_p utron_stars.html	ages/GLAST/	$\longleftrightarrow \bigvee$	

which atoms to use in the ultracold world?

1	IA 1 H	IIA	need laser-coolable isotopes with odd number of neutrons															
2	Li	Be	(8 species so far)										5 B	°C	7 N	°	9 F	Ne
3	¹¹ Na	¹² Mg	IIIB IVB VB VIB VIIB —— VII —— IB IIB											¹⁴ Si	¹⁵ P	¹⁶ S	¹⁷ CI	¹⁸ Ar
4	K	Ca	Sc	22 Ti	²³ V	Cr	²⁵ Mn	Fe	27 Co	²⁸ Ni	Cu	³⁰ Zn	Ga	Ge	As	³⁴ Se	³⁵ Br	³⁶ Kr
5	37 Rb	³⁸ Sr	³⁹ Y	40 Zr	41 Nb	42 Mo	43 Tc	⁴⁴ Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	⁵⁰ Sn	51 Sb	52 Te	53 	⁵⁴ Xe
6	55 Cs	56 Ba	⁵⁷ *La	72 Hf	73 Ta	74 W	75 Re	⁷⁶ Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	⁸² Pb	83 Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
7	⁸⁷ Fr	⁸⁸ Ra	89 +Ac	104 Rf	¹⁰⁵ Ha	¹⁰⁶ Sg	¹⁰⁷ Ns	¹⁰⁸ Hs	109 Mt	¹¹⁰ 110	111 111	¹¹² 112	¹¹³ 113					
																	_	
*	Lanth Series	anide s	58 Ce	⁵⁹ Pr	60 Nd	61 Pm	62 Sm	63 Eu	Gd ⁶⁴	⁶⁵ Tb	66 Dy	67 Ho	Er	69 Tm	70 Yb	⁷¹ Lu		
+	Actini Series	de s	90 Th	91 Pa	⁹² U	93 Np	⁹⁴ Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	¹⁰⁰ Fm	¹⁰¹ Md	¹⁰² No	¹⁰³ Lr		

spatial profile in LDA

Thomas-Fermi profile @ T=0

$$n(r) \propto \left[E_F - U(r)\right]^{3/2}$$

large-sized, non-interacting Fermi gas at zero temperature

cooling fermions

laser cooling and trapping: Zeeman slowing, MOTs, optical dipole traps ...

some species (Sr, Yb, Dy, Er) narrow-line Doppler cooling

evaporative cooling

need elastic collisions!

video lecture on evaporative cooling MSc course

elastic collisions: three options

s-wave collisions between unlike atoms

- sympathetic cooling, i.e. cooling by another species mixtures of ⁷Li-⁶Li, ²³Na-⁶Li, or ⁸⁷Rb-⁴⁰K, ...
- single species, but two different spin states spin mixtures of ⁶Li, ⁴⁰K, ⁸⁷Sr, ¹⁷¹Yb

dipolar collisions (higher partial waves) for identical fermions

 strongly magnetic atoms ¹⁶¹Dy, ¹⁶⁷Er

what makes fermions so interesting?

strong interactions in a Fermi gas

which parameter characterizes the interaction in a quantum gas?

s-wave scattering length a

 $|a| \ll 1/k_F$

 $|a| \gtrsim 1/k_F$

weak interaction: elastic collisions, mean field straightforward theory, easy description

strong interaction: exciting many-body physics challenges our theoretical understanding

how can we control this?

fermionic spin mixture with Feshbach resonance

spin mixtures of

two systems widely used

Feshbach resonance (broad, with large universal range)

superfluidity in Fermi gases: two breakthroughs

current research in Innsbruck: Mixtures with fermions

universality: dimensionless quantities

all energies normalized
to Fermi energy $E(X)/E_F$ $E_F = \frac{(\hbar k_F)^2}{2m} \approx k_B \times 1\mu K$ dimensionles
interaction strength $X \equiv -\frac{1}{k_F a}$ $1/k_F \approx 4000a_0 \approx 200$ nm
typical expt. conditions

note: for narrow Feshbach resonances another parameter (R^*/a) enters the problem

single-impurity physics well understood thanks to a lot of theoretical and experimental work in the last 10 years Fermi liquid: first part of the story

what's new?

mediated impurity-impurity interaction

second part of the story

many narrow intraspecies (Dy) and interspecies (Dy-K) resonances

formation of molecules on low-field resonance

let's go for the next steps: trap the molecules and go for BEC

Soave et al., arXiv:2204.07921 (2023)

general conclusion

Ultracold fermions: a great playground for physics Enrico Fermi of strongly interacting many-body systems

many challenges ahead for experiment and theory

Innsbruck work funded by

Der Wissenschaftsfonds.

ALM

