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Content of the lecture

- repulsive interaction:  quasiparticles and Landau zero sound

Interacting Fermi gas:

Ideal Fermi gas:

Introduction:

- attractive interaction: BCS pairing

- fermionic operators, their algebra and Pauli principle

- ground state, excitations, basic properties 

- perturbative approach and Pauli blocking

Conclusion:

- repulsive vs. attractive Fermi gas



Introduction: fermionic operators, their algebra and Pauli principle

𝑎𝜈 , 𝑎𝜈
+

- fermionic annihilation and creation operators of a particle

in a quantum state 𝜈

𝑎𝜈 , 𝑎𝜇
+ = 𝑎𝜈𝑎𝜇

+ + 𝑎𝜇
+𝑎𝜈 = 𝛿𝜈,𝜇 𝑎𝜈 , 𝑎𝜇 = 0 𝑎𝜈

+, 𝑎𝜇
+ = 0

𝑎𝜈
2 = 0 𝑎𝜈

+ 2 = 0Pauli principle

𝜈 - complete set of quantum numbers which characterize a single-particle state

for a gas,𝜈 = (  𝑝, 𝜎)  𝑝 𝜎- momentum, - component/species index

Operator algebra

Fermionic operators



identical fermions (single-component gas) in a volume

Ideal Fermi gas: ground state, excitations, basic properties 

𝑉

 𝐻0 = Σ  𝑝휀𝑝𝑎  𝑝
+𝑎  𝑝 , 휀𝑝=

𝑝2

2𝑚

|  𝐺 = Π𝑝≤𝑝𝐹
𝑎  𝑝

+|  0

𝑁 → ∞,𝑉 → ∞,  𝑁 𝑉 = 𝑛

𝑁

- (concentration) fixed

Hamiltonian

Ground state: - filled Fermi sphere (3D)

𝑝𝐹

 𝑝

 𝑝

1

0

𝑛  𝑝 = 𝐺 𝑎  𝑝
+𝑎  𝑝 𝐺

𝑝𝐹

𝑛  𝑝 = 0

𝑛  𝑝 = 1

𝑝𝐹 - Fermi momentum

Fermi sphere             , Fermi surface𝑝 ≤ 𝑝𝐹 𝑝 = 𝑝𝐹



𝑝𝐹What determines the Fermi momentum       ?

𝑁 = Σ  𝑝𝑛  𝑝 = Σ𝑝≤𝑝𝐹
1 = 𝑉∫𝑝≤𝑝𝐹

𝑑  𝑝

(2𝜋ℏ)3
= 𝑉

4𝜋

(2𝜋ℏ)3
𝑝𝐹

3

3

This gives

𝑝𝐹 = ℏ(6𝜋2𝑛)1/3 depends only on the concentration 𝑛

Properties of the ground state

- energy: 𝐸0 = 𝑁
3

5
휀𝐹 휀𝐹 =

𝑝𝐹
2

2𝑚
- Fermi energy(kinetic energy!)

- pressure: 𝑝 = −
𝜕𝐸0

𝜕𝑉
=

2

5
𝑛휀𝐹≠ 0 Fermi pressure

- chemical potential: 𝜇 =
𝜕𝐸0

𝜕𝑁
= 휀𝐹

- density of state (DOS) at       :  휀𝐹 𝜈𝐹 = 𝑉−1Σ  𝑝𝛿 휀𝑝 − 휀𝐹 =
𝑚𝑝𝐹

2𝜋2ℏ3



particle excitation:

Excitations:

Ground state Excited state

 𝑝1

 𝑝2 𝑝2 > 𝑝𝐹

𝑝1 < 𝑝𝐹

particle

hole

|   𝑝 = 𝑎  𝑝
+|  𝐺 (         only for                  and has              particles!)𝑝 > 𝑝𝐹≠ 0 𝑁 + 1

𝐸𝑝 = 휀𝑝 + 𝐸0 𝑁 − 𝐸0 𝑁 + 1 = 휀𝑝 − 𝜇 = 휀𝑝 − 휀𝐹 > 0

= −𝜇

hole excitation: |   𝑝 = 𝑎−  𝑝|  𝐺 (         only for                  and has              particles!)𝑝 < 𝑝𝐹≠ 0 𝑁 − 1

𝐸𝑝 = −휀𝑝 + 𝐸0 𝑁 − 𝐸0 𝑁 − 1 = 𝜇 − 휀𝑝 = 휀𝐹 − 휀𝑝 > 0

= 𝜇



General expression:

𝐸𝑝 = 휀𝑝 − 휀𝐹 =
𝑝2 − 𝑝𝐹

2

2𝑚
≈

𝑝𝐹

𝑚
𝑝 − 𝑝𝐹 gapless!

for 𝑝 ≈ 𝑝𝐹

𝐸𝑝

𝑝
𝑝𝐹

휀𝐹

0

low-energy excitations



Finite (small) temperature

Only excitations with                   are relevant !

At such temperatures:

𝑇 ≪ 휀𝐹 = 𝑇𝐹

𝑝 ≈ 𝑝𝐹

𝑛𝑝 =
1

𝑒(𝜀𝑝−𝜇)/𝑇 + 1

𝑝𝐹
𝑝

1

0

𝑛  𝑝
휀𝑝 − 휀𝐹 ~𝑇 ≪ 휀𝐹

- energy: 𝐸 𝑇 = 𝐸0 + (  𝜋2 6)𝜈𝐹𝑇
2

- chemical potential: 𝜇 = 휀𝐹 1 −
𝜋2

12

𝑇2

휀𝐹
2

- specific heat: 𝑐𝑉 = (  𝜋2 3) 𝜈𝐹𝑇 Signature of the Fermi sphere !

(𝑘𝐵 = 1)



Interacting Fermi gas: Perturbative approach and Pauli blocking

𝑉  𝑟 → g𝛿( 𝑟)

𝑉  𝑟 interparticle interaction with the range 𝑟0

Gas: 𝑛𝑟0
3 ≪ 1

Ultracold gas:

(quantum)

ℏ

𝑝
≫ 𝑛−1/3

𝑝𝑟0/ℏ ≪ 1

s-wave scattering only !

𝑝 - typical momentum

1. We need at least two components (species)

to see the effects of the interaction 

2. Interaction can be simplified as

with g =
4𝜋ℏ2

𝑚
𝑎𝑠

𝑎𝑠 - s-wave scattering length



Two-component Fermi gas:

𝐸 = 𝐸0 + 𝐺  𝐻𝑖𝑛𝑡 𝐺 = 𝑉 2𝑛
3

5
𝜖𝐹 + g𝑛2

𝜎 = ±, 𝑚±= 𝑚, 𝑛±= 𝑛

 𝐻 =  𝐻0 +  𝐻𝑖𝑛𝑡 =  𝐻0 + g 𝑑 𝑟 𝑛+  𝑟 𝑛−  𝑟

= Σ  𝑝,𝜎휀𝑝𝑎  𝑝,𝜎
+ 𝑎  𝑝,𝜎 +

g

𝑉
Σ  𝑝1,  𝑝2,𝑞

𝑎  𝑝1+𝑞,+
+ 𝑎  𝑝2−𝑞,−

+ 𝑎  𝑝2,−
𝑎  𝑝1,+

Hamiltonian

First order interaction effects:

𝜇± = 𝜖𝐹 + g𝑛∓ = 𝜖𝐹 + g𝑛 = 𝜇

Small parameter for perturbative calculations:

𝐺  𝐻𝑖𝑛𝑡 𝐺

𝐸0
~

𝑎𝑠𝑝𝐹

ℏ
~𝑎𝑠𝑛

1/3 ≪ 1



Pauli blocking for scattering:

Pauli principle strongly reduces available final states for scattering 

of particles near the Fermi surface

Initial state
Final state

 𝑝′2,−

𝑝2,− < 𝑝𝐹

𝑝1,+ > 𝑝𝐹

 𝑝1,+ +  𝑝2,− =  𝑝′1,+ +  𝑝′2,−

 𝑝2,−

 𝑝′1,+

 𝑝′2,−

 𝑝′1,+

𝑝′1,+ > 𝑝𝐹

𝑝′2,− > 𝑝𝐹

 𝑝1,+

휀1,+ + 𝜖2,− = 휀1′,+ + 휀2′,−

Pauli principle



Pauli blocking for scattering:

Pauli principle strongly reduces available final states for scattering 

of particles near the Fermi surface

Initial state
Final state

 𝑝′2,−

𝑝2,− < 𝑝𝐹

𝑝1,+ > 𝑝𝐹

 𝑝1,+ +  𝑝2,− =  𝑝′1,+ +  𝑝′2,−

 𝑝2,−

 𝑝′1,+

 𝑝′2,−

 𝑝′1,+

𝑝′1,+ > 𝑝𝐹

𝑝′2,− > 𝑝𝐹

 𝑝1,+

휀1,+ + 𝜖2,− = 휀1′,+ + 휀2′,−
or

(휀1,+−휀𝐹) = (휀1′,+−휀𝐹) + (휀2′,−−휀𝐹) +(휀𝐹 −𝜖2,−)

Pauli principle



Pauli blocking for scattering:

Pauli principle strongly reduces available final states for scattering 

of particles near the Fermi surface

Initial state
Final state

 𝑝′2,−

𝑝2,− < 𝑝𝐹

𝑝1,+ > 𝑝𝐹

 𝑝1,+ +  𝑝2,− =  𝑝′1,+ +  𝑝′2,−

 𝑝2,−

 𝑝′1,+

 𝑝′2,−

 𝑝′1,+

𝑝′1,+ > 𝑝𝐹

𝑝′2,− > 𝑝𝐹

 𝑝1,+

휀1,+ + 𝜖2,− = 휀1′,+ + 휀2′,−
or

(휀1,+−휀𝐹) = (휀1′,+−휀𝐹) + (휀2′,−−휀𝐹) +(휀𝐹 −𝜖2,−)

> 0𝐹 > 0𝐹 > 0𝐹 > 0𝐹

Pauli blocking !

Pauli principle



the life-time       of the excitation with momentum

As a result of Pauli blocking for final states,

1

𝜏𝑝
=

1

𝜏𝑐𝑙
𝑚𝑎𝑥

𝐸𝑝

휀𝐹

2

,
𝑇

휀𝐹

2

≪
1

𝜏𝑐𝑙

𝑝

where

𝜏𝑝

𝜏𝑐𝑙~𝑛𝑎𝑠
2
𝑝𝐹

𝑚
- classical collisional time

Consequences:

1. Excitations close to the Fermi surface,               ,  are long-lived and,

therefore, are well-defined (quasiparticles)

𝑝 ≈ 𝑝𝐹

2. One needs a long time to reach local equilibrium. As a result,

hydrodynamic regime                 is questionable𝜔𝜏 ≪ 1

Pauli blocking !



Two-component Fermi gas with repulsive interaction g > 0

𝑎𝑠 > 0(           )

Results of the interaction: Fermi-liquid renormalization of single-particle 

excitations (particles and holes) and 

appearance of the collective mode – Landau zero sound:

𝑝𝐹 𝑝

1

0

𝑛𝑝

1. Particle momentum distribution

𝑍 < 1

𝑛𝑝 is discontinuous at 𝑝 = 𝑝𝐹

𝑍 = 1 −
8 ln 2

𝜋2

𝑎𝑠𝑝𝐹

ℏ

2



Single-particle properties are similar to those of an ideal gas of quasiparticles

with the effective mass         and the same density     (same      ). 

2. Single-particle excitations for

𝐸𝑝 ≈
𝑝𝐹

𝑚∗
𝑝 − 𝑝𝐹

𝑝 ≈ 𝑝𝐹

with effective mass

𝑚∗ = 𝑚 1 +
8

15𝜋2
7 ln 2 − 1

𝑎𝑠𝑝𝐹

ℏ

2

𝑚∗ 𝑝𝐹𝑛

3. Collective mode – Landau zero sound

(coherent motion of particle-hole excitations)

𝜔𝑘 = 𝑐𝑘 with

It is a “high-frequency” sound

without establishing local equilibrium (not hydrodynamic sound !) 

𝑐 ≈
𝑝𝐹

𝑚∗
1 + 2 𝑒𝑥𝑝 −

𝜋ℏ

𝑎𝑠𝑝𝐹

𝜔𝑘𝜏 ≫ 1



(             )

Two-component Fermi gas with attractive interaction g < 0

𝑎𝑠 < 0

Sharp Fermi surface is unstable against Cooper pairing

In the new ground state

∆=
g

𝑉
Σ  𝑝

 𝐺 𝑎−  𝑝,−𝑎  𝑝,+
 𝐺 ≠ 0 - order parameter

BCS Hamiltonian

 𝐻𝐵𝐶𝑆 = Σ  𝑝,𝜎(휀𝑝−𝜇)𝑎  𝑝,𝜎
+ 𝑎  𝑝,𝜎 + ∆Σ  𝑝(𝑎  𝑝,+

+ 𝑎−  𝑝,−
+ + 𝑎−  𝑝,−𝑎  𝑝,+)

Pairs of particles with opposite momentum appear/disappear

from/to the collective degree of freedom ∆

|   𝐺

comes from the interaction term



We define quasiparticle (excitation) fermionic operators

Diagonalization via Bogoliubov transformation

𝛼  𝑝,𝜎 , 𝛼  𝑝𝜎
+

by the Bogoliubov transformation

𝛼  𝑝,+ = 𝑢𝑝𝑎  𝑝,+ + 𝑣𝑝𝑎−  𝑝,−
+

𝛼  𝑝,+
+ = 𝑢𝑝𝑎  𝑝,+

+ + 𝑣𝑝𝑎−  𝑝,−

𝛼  𝑝,− = 𝑢𝑝𝑎  𝑝,− − 𝑣𝑝𝑎−  𝑝,+
+

𝛼  𝑝,−
+ = 𝑢𝑝𝑎  𝑝,−

+ − 𝑣𝑝𝑎−  𝑝,+

with 

𝑢𝑝
2 + 𝑣𝑝

2 = 1

𝛼  𝑝,𝜎 , 𝛼𝑞,𝜌
+ = 𝛿  𝑝,𝑞𝛿𝜎,𝜌



With the choice

Diagonalization via Bogoliubov transformation

the Hamiltonian becomes diagonal:

 𝐻𝐵𝐶𝑆 =  𝐸0 + Σ  𝑝,𝜎𝐸𝑝𝛼  𝑝,𝜎
+ 𝛼  𝑝,𝜎

with 

𝐸𝑝 = (휀𝑝 − 𝜇)2+∆2 > 0

𝑢𝑝
2 =

1

2
1 +

휀𝑝 − 𝜇

𝐸𝑝
𝑣𝑝

2 =
1

2
1 −

휀𝑝 − 𝜇

𝐸𝑝

and

excitation energy

and 

∆order parameter (gap)

will be discussed

later 



Equation for      (gap equation) ∆

∆=
4𝜋ℏ2

𝑚
|𝑎𝑠|  

𝑑  𝑝

(2𝜋ℏ)3
tanh(𝐸𝑝/2𝑇)

2𝐸𝑝
−

𝑚

𝑝2
∆ BCS model only!

Non-trivial solution             exists only for ∆≠ 0 𝑇 < 𝑇𝑐

𝑇𝑐
𝐵𝐶𝑆 =

𝑒𝛾

𝜋
8𝑒−2 휀𝐹𝑒

−1/𝜆 = 0.61 휀𝐹𝑒
−1/𝜆

𝑇𝑐Critical temperature

𝑇𝑐
𝑔𝑎𝑠

=
𝑒𝛾

𝜋

2

𝑒

7/3

휀𝐹𝑒
−1/𝜆 = 0.28 휀𝐹𝑒

−1/𝜆

𝜆 =
2 𝑎𝑠 𝑝𝐹

𝜋ℏ
≪ 1 𝛾 = 0.5772 - Euler constant

with

𝑇𝑐 ≠ 0

for any 𝑎𝑠 < 0



The order parameter ∆(𝑇)

Second order phase transition!

∆(𝑇)

𝑇
𝑇𝑐

∆0

0

∆0= 𝜋𝑒−𝛾𝑇𝑐 = 1.57 𝑇𝑐

∆ 𝑇 = 3.06 𝑇𝑐 1 − 𝑇/𝑇𝑐

at small temperatures 

close to 𝑇𝑐

𝑇 → 0



𝛼  𝑝,𝜎|   𝐺 = 0

New ground state |   𝐺

for all 𝛼  𝑝,𝜎

|   𝐺 = Π  𝑝(𝑢𝑝 + 𝑣𝑝𝑎  𝑝,−
+ 𝑎−  𝑝,+

+ )|  0

Solution

- population in pairs

𝑝𝐹 𝑝

1

0

𝑣𝑝
2 𝑢𝑝

2

Particle momentum distribution

𝑛  𝑝,𝜎 =  𝐺 𝑎  𝑝,𝜎
+ 𝑎  𝑝,𝜎

 𝐺 = 𝑣𝑝
2

- continuous



Excitation energy

𝜉~
ℏ

𝛿𝑝
~

휀𝐹
∆

𝑛−1/3 ≫ 𝑛−1/3Coherence length

gap

𝐸𝑝 = (휀𝑝 − 𝜇)2+∆2

𝐸𝑝

𝑝
𝑝𝐹

휀𝐹

0

strongly overlapping

Cooper pairs

Δ

𝛿𝑝~
𝑚∆

𝑝𝐹
≪ 𝑝𝐹



Collective excitations (low energy)

Phase fluctuations of the order parameter

Δ → ∆  𝑟, 𝑡 = ∆𝑒𝑖𝜑  𝑟,𝑡

correspond to the Bogoliubov-Anderson sound

𝜔𝑘 = 𝑐𝑘 with 𝑐 ≈
1

3

𝑝𝐹

𝑚∗

With gapped single-particle excitations and 

sound-like collective excitations, the system is superfluid !



normal (           )       vs.     superfluid (           ) Femi gas𝑎𝑠 < 0𝑎𝑠 > 0

1. momentum distribution of particle (zero temperature)

2. spectrum of single-particle excitations

3. collective excitations

4. single-particle excitation density of states near Fermi surface

5. specific heat at low temperature (main contribution)

discontinuous continuous

gapless gapped (   )

Landau zero sound Bogoliubov-Anderson sound𝑐 ≈
𝑝𝐹

𝑚
𝑐 ≈

𝑝𝐹

3𝑚

finite gapped (     )2∆

∆

𝑐𝑉~𝑇 𝑐𝑉~𝑇3(single-particle) (collective)

Conclusion:



Thank you for your attention!






