

IQI

IQOQI AUSTRIAN ACADEMY OF SCIENCES

UNIVERSITY OF INNSBRUCK

(Basics of the) Fermi Gas Theory

M. Baranov

Institute for Quantum Optics and Quantum Information, Institute for Theoretical Physics, University of Innsbruck

Introductory Course on Ultracold Quantum Gases,

Innsbruck, 9 – 12 July 2023

Content of the lecture

Introduction:

- fermionic operators, their algebra and Pauli principle

Ideal Fermi gas:

- ground state, excitations, basic properties

Interacting Fermi gas:

- perturbative approach and Pauli blocking
- repulsive interaction: quasiparticles and Landau zero sound
- attractive interaction: BCS pairing

Conclusion:

- repulsive vs. attractive Fermi gas

Introduction: fermionic operators, their algebra and Pauli principle

Fermionic operators

 a_{ν} , a_{ν}^+ - fermionic annihilation and creation operators of a **particle** in a quantum state ν

 ${m {\cal V}}\,$ - complete set of quantum numbers which characterize a single-particle state

$$u = (ec{p}, \sigma) \,$$
 for a gas, $\, ec{p} \,$ - momentum, $\, \sigma \,$ - component/species index

Operator algebra

Ideal Fermi gas: ground state, excitations, basic properties

N identical fermions (single-component gas) in a volume V $N \to \infty, V \to \infty, N/V = n$ - (concentration) fixed Hamiltonian $\hat{H}_0 = \Sigma_{\vec{p}} \varepsilon_p a_{\vec{p}}^+ a_{\vec{p}}$, $\varepsilon_p = \frac{p^2}{2m}$ **Ground state**: $|G\rangle = \prod_{p \le p_F} a_{\vec{p}}^+ |0\rangle$ - filled Fermi sphere (3D) $n_{\vec{p}} = \left\langle G \left| a_{\vec{p}}^{+} a_{\vec{p}} \right| G \right\rangle$ \vec{p} $n_{\vec{p}} = 1 \frown$ $- n_{\vec{p}} = 0$ $|\vec{p}|$ 0 p_F p_F p_F - Fermi momentum Fermi sphere $p \leq p_F$, Fermi surface $p = p_F$

What determines the Fermi momentum p_F ?

$$N = \sum_{\vec{p}} n_{\vec{p}} = \sum_{p \le p_F} 1 = V \int_{p \le p_F} \frac{d\vec{p}}{(2\pi\hbar)^3} = V \frac{4\pi}{(2\pi\hbar)^3} \frac{p_F^3}{3}$$

This gives

$$p_F = \hbar (6\pi^2 n)^{1/3}$$

depends only on the concentration n

Properties of the ground state

- energy:
$$E_0 = N \frac{3}{5} \varepsilon_F$$
 (kinetic energy!) $\varepsilon_F = \frac{p_F^2}{2m}$ - Fermi energy
- pressure: $p = -\frac{\partial E_0}{\partial V} = \frac{2}{5} n \varepsilon_F \neq 0$ Fermi pressure
- chemical potential: $\mu = \frac{\partial E_0}{\partial N} = \varepsilon_F$

L

- density of state (DOS) at ε_F : $\nu_F = V^{-1} \Sigma_{\vec{p}} \delta(\varepsilon_p - \varepsilon_F) = \frac{m p_F}{2\pi^2 \hbar^3}$

Excitations:

particle excitation: $|\vec{p}\rangle = a_{\vec{p}}^+ |G\rangle$ ($\neq 0$ only for $p > p_F$ and has N + 1 particles!)

$$E_p = \varepsilon_p + E_0(N) - E_0(N+1) = \varepsilon_p - \mu = \varepsilon_p - \varepsilon_F > 0$$

hole excitation: $|\vec{p}\rangle = a_{-\vec{p}}|G\rangle$ ($\neq 0$ only for $p < p_F$ and has N - 1 particles!)

$$E_p = -\varepsilon_p + E_0(N) - E_0(N-1) = \mu - \varepsilon_p = \varepsilon_F - \varepsilon_p > 0$$

General expression:

Finite (small) temperature $T \ll \varepsilon_F = T_F$ $(k_B = 1)$

Only excitations with $p \approx p_F$ are relevant !

At such temperatures:

- energy:
$$E(T) = E_0 + (\pi^2/6)\nu_F T^2$$

- specific heat: $c_V = (\pi^2/3) v_F T$

Signature of the Fermi sphere !

- chemical potential:
$$\mu = \varepsilon_F \left(1 - \frac{\pi^2}{12} \frac{T^2}{\varepsilon_F^2} \right)$$

Interacting Fermi gas: Perturbative approach and Pauli blocking

 $V(\vec{r})$ interparticle interaction with the range r_0

Gas:
$$nr_0^3 \ll 1$$

Ultracold gas: $\frac{\hbar}{p} \gg n^{-1/3}$ $\implies pr_0/\hbar \ll 1$
(quantum)
 p - typical momentum
 p - typical momentum

1. We need at least two components (species) to see the effects of the interaction

2. Interaction can be simplified as

$$V(\vec{r}) \rightarrow g\delta(\vec{r})$$
 with $g = \frac{4\pi\hbar^2}{m} a_s$
 a_s - s-wave scattering length

Two-component Fermi gas: $\sigma = \pm$, $m_{\pm} = m$, $n_{\pm} = n$

Hamiltonian

$$\begin{aligned} \widehat{H} &= \widehat{H}_{0} + \widehat{H}_{int} = \widehat{H}_{0} + g \int d\vec{r} \, n_{+}(\vec{r}) n_{-}(\vec{r}) \\ &= \sum_{\vec{p},\sigma} \varepsilon_{p} a_{\vec{p},\sigma}^{+} a_{\vec{p},\sigma} + \frac{g}{V} \sum_{\vec{p}_{1},\vec{p}_{2},\vec{q}} a_{\vec{p}_{1}+\vec{q},+}^{+} a_{\vec{p}_{2}-\vec{q},-}^{+} a_{\vec{p}_{2},-} a_{\vec{p}_{1},+} \end{aligned}$$

First order interaction effects:

$$E = E_0 + \langle G | \widehat{H}_{int} | G \rangle = V \left\{ 2n \frac{3}{5} \epsilon_F + gn^2 \right\}$$
$$\mu_{\pm} = \epsilon_F + gn_{\mp} = \epsilon_F + gn = \mu$$

Small parameter for perturbative calculations:

$$\frac{\left\langle G \left| \widehat{H}_{int} \right| G \right\rangle}{E_0} \sim \frac{a_s p_F}{\hbar} \sim a_s n^{1/3} \ll 1$$

Pauli blocking for scattering:

Pauli principle strongly reduces available final states for scattering of particles **near the Fermi surface**

Pauli blocking for scattering:

Pauli principle strongly reduces available final states for scattering of particles **near the Fermi surface**

Pauli blocking for scattering:

Pauli principle strongly reduces available final states for scattering of particles **near the Fermi surface**

As a result of Pauli blocking for final states,

the life-time au_p of the excitation with momentum p

$$\frac{1}{\tau_p} = \frac{1}{\tau_{cl}} \left[max \left\{ \left(\frac{E_p}{\varepsilon_F} \right)^2, \left(\frac{T}{\varepsilon_F} \right)^2 \right\} \right] \ll \frac{1}{\tau_{cl}}$$
Pauli blocking !
$$\tau_{cl} \sim na_s^2 \frac{p_F}{m} \quad \text{- classical collisional time}$$

Consequences:

where

- 1. Excitations close to the Fermi surface, $p \approx p_F$, are long-lived and, therefore, are well-defined (quasiparticles)
- 2. One needs a long time to reach local equilibrium. As a result, hydrodynamic regime $\omega \tau \ll 1$ is questionable

Two-component Fermi gas with repulsive interaction g > 0($a_s > 0$)

Results of the interaction: **Fermi-liquid renormalization of single-particle excitations** (particles and holes) and appearance of the collective mode – **Landau zero sound**:

1. Particle momentum distribution

 n_p is discontinuous at $p = p_F$

$$Z = 1 - \frac{8\ln 2}{\pi^2} \left(\frac{a_s p_F}{\hbar}\right)^2$$

2. Single-particle excitations for $p \approx p_F$

$$E_p \approx \frac{p_F}{m_*} |p - p_F|$$

with effective mass

$$m_* = m \left[1 + \frac{8}{15\pi^2} (7 \ln 2 - 1) \left(\frac{a_s p_F}{\hbar} \right)^2 \right]$$

Single-particle properties are similar to those of an **ideal gas of quasiparticles** with the effective mass m_* and the same density n (same p_F).

3. Collective mode – Landau zero sound

(coherent motion of particle-hole excitations)

$$\omega_k = ck \quad \text{with} \quad c \approx \frac{p_F}{m_*} \left[1 + 2 \exp\left(-\frac{\pi\hbar}{a_s p_F}\right) \right]$$

It is a "high-frequency" sound $\omega_k \tau \gg 1$ without establishing local equilibrium (**not hydrodynamic sound !**) Two-component Fermi gas with attractive interaction g < 0($a_s < 0$)

Sharp Fermi surface is unstable against Cooper pairing

In the new ground state $|\tilde{G}\rangle$

$$\Delta = \frac{g}{V} \Sigma_{\vec{p}} \langle \tilde{G} | a_{-\vec{p},-} a_{\vec{p},+} | \tilde{G} \rangle \neq 0 \quad - \text{ order parameter}$$

BCS Hamiltonian

$$\widehat{H}_{BCS} = \Sigma_{\vec{p},\sigma} (\varepsilon_p - \mu) a_{\vec{p},\sigma}^+ a_{\vec{p},\sigma} + \Delta \Sigma_{\vec{p}} (a_{\vec{p},+}^+ a_{-\vec{p},-}^+ + a_{-\vec{p},-} a_{\vec{p},+})$$

Pairs of particles with opposite momentum appear/disappear from/to the collective degree of freedom Δ

Diagonalization via Bogoliubov transformation

We define quasiparticle (excitation) fermionic operators $\alpha_{\vec{p},\sigma}, \alpha_{\vec{p}\sigma}^+$

$$\left\{ \alpha_{\vec{p},\sigma}, \alpha^{+}_{\vec{q},\rho} \right\} = \delta_{\vec{p},\vec{q}} \delta_{\sigma,\rho}$$

by the Bogoliubov transformation

$$\alpha_{\vec{p},+} = u_p a_{\vec{p},+} + v_p a_{-\vec{p},-}^+ \qquad \alpha_{\vec{p},-} = u_p a_{\vec{p},-} - v_p a_{-\vec{p},+}^+$$
$$\alpha_{\vec{p},+}^+ = u_p a_{\vec{p},+}^+ + v_p a_{-\vec{p},-} \qquad \alpha_{\vec{p},-}^+ = u_p a_{\vec{p},-}^+ - v_p a_{-\vec{p},+}$$

with

$$u_p^2 + v_p^2 = 1$$

Diagonalization via Bogoliubov transformation

With the choice

$$u_p^2 = \frac{1}{2} \left[1 + \frac{\varepsilon_p - \mu}{E_p} \right]$$
 and $v_p^2 = \frac{1}{2} \left[1 - \frac{\varepsilon_p - \mu}{E_p} \right]$

the Hamiltonian becomes diagonal:

$$\widehat{H}_{BCS} = \widetilde{E}_0 + \Sigma_{\vec{p},\sigma} E_p \alpha_{\vec{p},\sigma}^+ \alpha_{\vec{p},\sigma}$$

with

excitation energy
$$E_p = \sqrt{(\varepsilon_p - \mu)^2 + \Delta^2} > 0$$

will be discussed later

and

order parameter (gap) Δ

Equation for Δ (gap equation)

$$\Delta = \frac{4\pi\hbar^2}{m} |a_s| \int \frac{d\vec{p}}{(2\pi\hbar)^3} \left[\frac{\tanh(E_p/2T)}{2E_p} - \frac{m}{p^2} \right] \Delta \quad \text{BCS model only!}$$

Non-trivial solution $\Delta \neq 0$ exists only for $T < T_c$

Critical temperature T_c

$$T_{c}^{BCS} = \frac{e^{\gamma}}{\pi} 8e^{-2} \varepsilon_{F} e^{-1/\lambda} = 0.61 \varepsilon_{F} e^{-1/\lambda} \qquad T_{c} \neq 0$$

$$T_{c}^{gas} = \frac{e^{\gamma}}{\pi} \left(\frac{2}{e}\right)^{7/3} \varepsilon_{F} e^{-1/\lambda} = 0.28 \varepsilon_{F} e^{-1/\lambda} \qquad \text{for any } a_{S} < 0$$

with

$$\lambda = rac{2|a_s|p_F}{\pi\hbar} \ll 1$$
 $\gamma = 0.5772$ - Euler constant

The order parameter $\Delta(T)$

Second order phase transition!

New ground state $|\tilde{G}\rangle$

$$lpha_{ec p,\sigma} | ilde G ig
angle = 0$$
 for all $lpha_{ec p,\sigma}$

Solution

$$|\tilde{G}\rangle = \prod_{\vec{p}}(u_p + v_p a_{\vec{p},-}^+ a_{-\vec{p},+}^+)|0\rangle$$
 - population in pairs

Particle momentum distribution

$$n_{\vec{p},\sigma} = \left\langle \tilde{G} \left| a_{\vec{p},\sigma}^{+} a_{\vec{p},\sigma} \right| \tilde{G} \right\rangle = v_{p}^{2} - \text{continuous}$$

Coherence length $\xi \sim \frac{\hbar}{\delta p} \sim \frac{\varepsilon_F}{\Delta} n^{-1/3} \gg n^{-1/3}$ strongly overlapping Cooper pairs

Collective excitations (low energy)

Phase fluctuations of the order parameter

$$\Delta \rightarrow \Delta(\vec{r},t) = \Delta e^{i\varphi(\vec{r},t)}$$

correspond to the Bogoliubov-Anderson sound

$$\omega_k = ck$$
 with $c \approx \frac{1}{\sqrt{3}} \frac{p_F}{m_*}$

With gapped single-particle excitations and sound-like collective excitations, the system is **superfluid** !

Conclusion:

normal ($a_s > 0$) vs. superfluid ($a_s < 0$) Femi gas

1. <u>momentum distribution of particle (zero temperature)</u> discontinuous continuous

2. spectrum of single-particle excitations

gapless

gapped (Δ)

3. <u>collective excitations</u>

Landau zero sound $c \approx \frac{p_F}{m}$ Bogoliubov-Anderson sound $c \approx \frac{p_F}{\sqrt{3}m}$

4. <u>single-particle excitation density of states near Fermi surface</u> finite gapped (2Δ)

5. <u>specific heat at low temperature (main contribution)</u>

 $c_V \sim T$ (single-particle) $c_V \sim T^3$ (collective)

Thank you for your attention!