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Content of the lecture

Introduction:

- fermionic operators, their algebra and Pauli principle

ldeal Fermi gas:

- ground state, excitations, basic properties
Interacting Fermi gas:
- perturbative approach and Pauli blocking

- repulsive interaction: quasiparticles and Landau zero sound
- attractive interaction: BCS pairing

Conclusion:

- repulsive vs. attractive Fermi gas



Introduction: fermionic operators, their algebra and Pauli principle

Fermionic operators

a,,, 4,, - fermionic annihilation and creation operators of a particle
in a quantum state v

V - complete set of quantum numbers which characterize a single-particle state
. - - . .
V = (P; 0) foragas, P - momentum, 0 - component/species index

Operator algebra

{a,,at}=a,a} +afa, =6,, {a,,a,} =0 {af,at}=0
1 1

Pauli principle (a,)* =0 (a})? =0




ldeal Fermi gas: ground state, excitations, basic properties

N identical fermions (single-component gas) in a volume 1/

N — o,V = o, N/V =n - (concentration) fixed

2
: : ~ n b
Hamiltonian Ho — Zpgpaﬁ Az, &= _Zm

Ground state: |G) = HpSpFa;5|O) - filled Fermi sphere (3D)

_ +
ng = <G asaz G>
p | n; =1 11
12
) _0\\
— N = -
> 0
F PF
Pr - Fermi momentum

Fermi sphere p < pg, Fermi surface P = Pr



What determines the Fermi momentum Pg ?

dp _v 4w p;
p<pr (2h)3  (2mh)3 3

N=3mz=23,,1=V]

This gives

Dr = fl(67‘[2n)1/3 depends only on the concentration N

Properties of the ground state

3 pé |
-energy: Ey = N = €p (kinetic energy!) | € = o— - Fermienergy
5 2m
0E, 2 0
- pressure; P = ——— = —nE Fermi pressure
P= "%y ~5F
d0E,
- chemical potential: = —=E&
P U N F

mpr
212 h3

- . _ -1y _ _
- density of state (DOS) at €r: vgp =V 2p5(€p gF) —



Excitations:

Ground state i >
Excited state o B D, > Dp
particle
jl> D1 P1 < DPr
hole

particle excitation: |p) = ag |G) (# Oonlyfor p>Pr andhas N + 1 particles!)

E,=e,+EyN)—E;(N+1)=¢,—u=¢,—€p>0
)

\

= U
hole excitation: |ﬁ) = a_ﬁ|G) (# 0 only for p < Pr and has N — 1 particles!)

E,=—-e,+E(N)—E(N-1)=p—¢e,=¢p—5,>0

\ )

|
= u




General expression:

2 2
E =|€ —€F|= P Pr) JPF p — prl gapless!
p P 2m m
for p = pr
Ep
€F

low-energy excitations

° W 7




Finite (small) temperature T < ez =Tk (kg = 1)

Only excitations with P = P are relevant !

N= — <—|€p—€F|~T KL Ef

p
————
1 1
" = /T 4 q
0
PFr P
At such temperatures:
-energy: E(T) = Ey + (m?/6)vpT?
- specific heat: | ¢y = (?/3) VT Signature of the Fermi sphere !




Interacting Fermi gas: Perturbative approach and Pauli blocking

V(‘l_”)) interparticle interaction with the range 17

Gas: nry,° «1
h p— :> pTO/h << 1
Ultracold gas: — > n~1/3

(Quantum) p s-wave scattering only !
P - typical momentum ﬂ

1. We need at least two components (species)
to see the effects of the interaction

2. Interaction can be simplified as

AT h?
m

As

V() - gs(r) with g=

as - s-wave scattering length




Two-component Fermigas: ¢ =+, my=m, ny=n

Hamiltonian

A=0,+0,, =0 +g j 4 n, (D ()

=y, + s+ =

I?ng pa )

+
ap

Z_C_ir_ a

+
D1,02,9 ﬁ +q,+ Do,—

< |09

D1, +

First order interaction effects:
A 3 ,
E =Ey+(G|Hn|G) =V 2nzep +gn
Uy = €p T 8Nx =€ T8N = U

Small parameter for perturbative calculations:

<G|ﬁint|G>~aspF

~ant/3 « 1



Pauli blocking for scattering:

Pauli principle strongly reduces available final states for scattering
of particles near the Fermi surface

Initial state Final state 21 Pauli principle
) P+
-y By _ P1,+ = DF
ﬂ P'1+ > Pr
P2,— < Pr
p', ¢ p'2- > DF

- - >y -/
Pi1+ TP2-=D14+ TD2-
81’_|_ + 62’_ —_ 81,’+ + 82,’_

O\ﬁ:,+

=/

P 2,-



Pauli blocking for scattering:

Pauli principle strongly reduces available final states for scattering
of particles near the Fermi surface

Initial state Final state > Pauli principle
) P+
-y By _ P1,+ = DF
ﬂ P'1+ > Dr
P2~ < Pr
p', ¢ p'2- > DF

- - >y -/
Pi1+ TP2-=D14+ TD2-
81’_|_ + 62’_ —_ 81,’+ + 82,’_

O\ﬁ;l,+ or
(E1,4+—¢r) = (& 4y —€F) + (52’,—_€F) +(er —€3,-)

=/

P 2,-



Pauli blocking for scattering:

Pauli principle strongly reduces available final states for scattering
of particles near the Fermi surface

Initial state Final state 5 Pauli principle
e ; '
P1+ Do — D1+ > PF
:Vt\ P'1+ > DF
P2,- < PF
ﬁlz’_ p,2,— > Pr
- - >y -/
Pi+ TP2-=DP1,+ TD2-
oy 81’_|_ + 62’_ —_ 81,’+ + 82,’_
25
(e1,+—€r) = (e +—¢€F) + (& _—€F) +(€1F —€3,-)
pP's- > Op > Op > 0p > 0p

Pauli blocking !



As a result of Pauli blocking for final states,

the life-time Tp of the excitation with momentum P

1 1 (Ep>2 ( T >2 1
— =—maxs|— ]| ,| — LK —
Tp Tcl €F €F Tcl

Pauli blocking !

) PF : . :
where T, ~nas— - classical collisional time
m

Consequences:

1. Excitations close to the Fermi surface, p = pr, are long-lived and,
therefore, are well-defined (quasiparticles)

2. One needs a long time to reach local equilibrium. As a result,
hydrodynamic regime wT < 1 is questionable



Two-component Fermi gas with repulsive interaction g > 0
(as >0)

Results of the interaction: Fermi-liquid renormalization of single-particle
excitations (particles and holes) and
appearance of the collective mode — Landau zero sound:

1. Particle momentum distribution
.

Pr P

Ny s discontinuous at P = Pr

Z=1

81In 2 (aSpF)Z
[ h



2. Single-particle excitations for p = pg

Pr
E,~—|p—
D *lp pFl

with effective mass

152

«=m|l
m m[+ 7

(7In2 — 1) (asp”>2]

Single-particle properties are similar to those of an ideal gas of quasiparticles
with the effective mass m, and the same density n (same pg).

3. Collective mode — Landau zero sound
(coherent motion of particle-hole excitations)

Dr mh
wr =ck with c=—|1+2exp|—
m, AsPr

Itis a “high-frequency” sound WgT > 1
without establishing local equilibrium (not hydrodynamic sound !)



Two-component Fermi gas with attractive interaction g < 0
(as < 0)

Sharp Fermi surface is unstable against Cooper pairing

In the new ground state |G)

A= =X »(Gv|a_ 3 aﬁ,+|G) * 0 - order parameter

BCS Hamiltonian

comes from the interaction term

A
| 1

i} + + 4+
Hgro = Zﬁ’g(e‘p—u)aﬁ’gaﬁ,g + AZﬁ(aﬁ’Jra_ﬁ’_ + a_ﬁ,_aﬁ,Jr)

\/

Pairs of particles with opposite momentum appear/disappear
from/to the collective degree of freedom A




Diagonalization via Bogoliubov transformation

We define quasiparticle (excitation) fermionic operators &g, X355
+ j— - =
{“p,a' “c?,p} = 05,490,p
by the Bogoliubov transformation
. = - +v,a’ Ap_ = U,y _ — Vya_
Ap,+ = UpQp+ T VpQ_p _ p— = YWlp- " YU p+
+ + +
Apq4+ = Upd p T Wpap- Q5 = Uplp  — Vpl_p,
with

2 2 _
Up +vp =1



Diagonalization via Bogoliubov transformation

With the choice

1 Ep — U 1 Ep — U
R R

the Hamiltonian becomes diagonal:

HBCS — EO + Zﬁ,O-Epai_ adz

p,oc~"Db,0
with
) : E. = . — 2-|-A2 >0 will be discussed
excitation energy » J (&p — 1) ter
and

order parameter (gap) A



Equation for A (gap equation)

A= — —| A BCS model only!
m 1% e | 2E, )2 4

_ Amh? dp [tanh(Ep/ZT) m

Non-trivial solution A# O existsonly for T < T,

Critical temperature T,

eV
BCS _ - q,—2 -1/ _ -1/2
T; - 8e “ gre 0.61 gre T. %0
7/3
eV (2 forany as < 0
TCgaS = — <—> &'I:,'e_l/}l = (0.28 EFe_l/A Y 7
T \ e
with 2| |
1 = As|DF &1 Yy = 0.5772 - Euler constant

Th



The order parameter A(T)

A(T)“ closeto T,
Ag A(T) =3.06T.\/1—T/T,
t
> T
0 T
|

Ao=me VT, = 1.57 T, atsmall temperatures T — 0

Second order phase transition!



New ground state |G)

aﬁ,a|6> = (0 forall A5 o
Solution
G) = Nz(u, + vpag_afﬁ+)|0) _ population in pairs
2 2
A v u
1 P - P
0
Pr D

Particle momentum distribution

_(Al+ . A\ — .2 -
Ngg = <G‘aﬁjaap’0‘6> = Vp - continuous



Excitation energy  E, = \/(ep — 1)?*+A?

E, .
€F
QTD A
0 -4 p
Pr T
mA
— [ 0p~——<KpF
Pr

h ¢
Coherence length €~—~—Fn_1/3 > n~1/3 strongly overlapping

op A Cooper pairs



Collective excitations (low energy)

Phase fluctuations of the order parameter
A > A7, t) = Aele@D

correspond to the Bogoliubov-Anderson sound

| 1 pp
Wy = ck  with C~EE

With gapped single-particle excitations and
sound-like collective excitations, the system is superfluid !



Conclusion:

normal (ag; > 0) vs. superfluid (as < 0) Femi gas

1. momentum distribution of particle (zero temperature)

discontinuous continuous

2. spectrum of single-particle excitations

gapless gapped (A)
3. collective excitations
Landau zero sound ¢ ~ Pr Bogoliubov-Anderson sound ¢ = Pr
m V3m
4. single-particle excitation density of states near Fermi surface
finite gapped (24A)

5. specific heat at low temperature (main contribution)

cy~T (single-particle) CVNT3 (collective)



Thank you for your attention!









