

FШF

erc

2012-2016

2019-2023

Optical lattices (and 1D systems)

Introductory Course on Ultracold Quantum Gases 2023

Hanns-Christoph Nägerl

Institut für Experimentalphysik Universität Innsbruck **quantummatter.at**

Basic introduction to Hubbard models

Interactions and tunneling in the BHM

Basic introduction into 1D systems

Strongly interacting bosons in 1D systems

HINIS BEALER

Many-body physics with ultracold gases, I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

Engineering novel optical lattices, P. Windpassinger and K. Sengstock, Rep. Prog. Phys. 76 086401 (2013)

Non-standard Hubbard models in optical lattices: a review, O. Dutta et al., Rep. Prog. Phys. 78, 066001 (2015)

Quantum simulations with ultracold atoms in optical lattices, C. Gross and I. Bloch, Science 357, 995 (2017)

Motivation

Investigating Bose/Fermi-Hubbard models

Basis for all lattice experiments: cold atoms

HINIS STALLA

An apparatus like this:

Trapping and cooling atoms down to μK

Further cooling by evaporation for getting a BEC

Creation of an optical lattice

Original concept

Local particles

Band structure optical lattice

metal

F. Bloch

Energy

insulator

Localized wavefunctions optical lattice: Wannier functions $w_i(x)$

Controllable interactions

Groundstates and phase diagram

Experiment

External confinement

• No excitation gap • No excitation gap Mott insulator (MI) • Localized particles • No phase coherence • No phase coherence • No phase coherence • No phase coherence

• Excitation gap

HINIS BEAGLE

Bosons (2002)

Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms

Markus Greiner*, Olaf Mandel*, Tilman Esslinger†, Theodor W. Hänsch* & Immanuel Bloch

* Sektion Physik, Ludwig-Maximilians-Universität, Schellingstrasse 4/III, D-80799 Munich, Germany, and Max-Planck-Institut f
ür Quantenoptik, D-85748 Garching Germany
* Ouantenelektronik, ETH Zürich, 8093 Zurich, Switzerland

For a system at a temperature of absolute zero, all thermal fluctuations are frozen out, while quantum fluctuations prevail. These microscopic quantum fluctuations can induce a macroscopic phase transition in the ground state of a many-body system when the relative strength of two competing energy terms is varied across a critical value. Here we observe such a quantum phase transition in a Bose–Einstein condensate with repulsive interactions, held in a three-dimensional optical lattice potential. As the potential depth of the lattice is increased, a transition is observed from a superfluid to a Mott insulator phase. In the superfluid phase, each

Fermions (2008)

Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice

U. Schneider,¹ L. Hackermüller,¹ S. Will,¹ Th. Best,¹ I. Bloch,^{1,2*} T. A. Costi,³ R. W. Helmes,⁴ D. Rasch,⁴ A. Rosch⁴

The fermionic Hubbard model plays a fundamental role in the description of strongly correlated materials. We have realized this Hamiltonian in a repulsively interacting spin mixture of ultracold ⁴⁰K atoms in a three-dimensional (3D) optical lattice. Using in situ imaging and independent control of external confinement and lattice depth, we were able to directly measure the compressibility of the quantum gas in the trap. Together with a comparison to ab initio dynamical mean field theory

LETTERS

A Mott insulator of fermionic atoms in an optical lattice

Robert Jördens¹*, Niels Strohmaier¹*, Kenneth Günter^{1,2}, Henning Moritz¹ & Tilman Esslinger¹

articles

Strong interactions between electrons in a solid material can lead to surprising properties. A prime example is the Mott insulator, in which suppression of conductivity occurs as a result of interactions rather than a filled Bloch band¹. Proximity to the Mott insulating phase in fermionic systems is the origin of many intriguing phenomena in condensed matter physics², most notably high-temnerature superconductivity². The Hubbard model⁴, which encom-

the physics of strongly correlated systems. In an optical lattice three mutually perpendicular standing laser waves create a periodic potential for the atoms. The kinetics of the atoms is determined by their tunnelling rate between neighbouring lattice sites, and the interaction is due to interatomic collisions occurring when two atoms are on the same site. In a gas of fermions in different spin states this collisional interaction can be widely tuned through a Fesbhach resonance with-

Typical experimental setup, as in our group

Measurement method

Probe coherence by TOF measurements

Hinsbridg

Observable: Contrast

Mark et al. Phys. Rev. Lett. 107, 175301 (2011)

Quantum-gas microscope

System

Greiner group @ Harvard

'wedding cake structure'

uning cake structure

Bose-Hubbard and beyond

The standard Bose-Hubbard model

$$\widehat{H} = -J \sum_{\langle i,j \rangle} \widehat{a}_i^{\dagger} \widehat{a}_j + \sum_i \frac{U}{2} \widehat{n}_i \left(\widehat{n}_i - 1 \right) + \sum_i \epsilon_i \widehat{n}_i$$

Is this enough to describe the systems accuratly?

HINIS EFECT

The standard Bose-Hubbard model

$$\widehat{H} = -J\sum_{\langle i,j \rangle} \widehat{a}_i^{\dagger} \widehat{a}_j + \sum_i \frac{U}{2} \widehat{n}_i \left(\widehat{n}_i - 1 \right) + \sum_i \epsilon_i \widehat{n}_i$$

Let's have a closer look at on-site contact interactions!

0.7

BEC fraction x_{BEC} 5.0 x_{BEC} 7.0 x_{BEC}

0.3

0

2.6

Busch *et al.,* Found. of Physics 28, 549 (1998) Schneider *et al.,* Phys. Rev. A 80, 013404 (2009) Büchler *et al.,* Phys. Rev. Lett. 104, 090402 (2010)

Kraemer et al., Nature 440, 315 (2006)

Measurement

HINSEFALL

The standard Bose-Hubbard model

$$\widehat{H} = -J\sum_{\langle i,j \rangle} \widehat{a}_i^{\dagger} \widehat{a}_j + \sum_i \frac{U}{2} \widehat{n}_i \left(\widehat{n}_i - 1\right) + \sum_i \epsilon_i \widehat{n}_i$$

Let's have a closer look on tunneling dynamics!

Starting point

Each tube is initially in a 1D Mott insulator configuration with one atom per lattice site

Loading distribution

3D Mott insulator with an almost pure singly occupied Mott shell

About 2000 tubes are populated with up to 60 atoms per tube

HINIX SFALL

Maps to a spin model: S. Sachdev et al., Phys. Rev. B 66, 075128 (2002)

Experiment with a quantum-gas microscope: J. Simon *et* al., Nature 472, 307 (2011)

Ising-type phase transition: PM-AFM

Quench near the critical point

100 50 50 -40 -20 0 20 Detuning (U-E)/J

On resonance:

$$f_{osc} = 2\frac{\sqrt{2}J}{2\pi\hbar}$$

With detuning:

 $f_{osc} \sim (E - U)^2$

Theory: P. Rubbo et al., Phys. Rev. A 84, 033638 (2011)

Measurement

Double-well system

- Change tilt within 1ms
- Wait hold time
- Change tilt back
- Freeze the system (lattice depth)
- Measure double occupancy

Multibody effects

Tunneling modified by interactions

density-induced tunneling

Long-range interactions extensions

Let's have a closer look on long-range interactions!

Erbium properties

*Lanthanide series

* * Actinide series

63 66 67 59 60 61 62 65 Pr Nd Pm Sm Eu Gd Tb Dv Ho 140.91 144.24 [145] neptunium 150.36 151.96 157.25 164.93 protactiniu uranium plutonium americium curium berkelium californium einsteiniur 91 92 93 94 95 96 97 98 99 Pa U Np Pu Bk Cf Es Am Cm

europium

gadolinium

Bose-condensed

terbium

ysprosiu

holmium

Laser-cooled

Submerged-shell structure

lanthanun

57

_a

138.91

actinium

89

Ac

cerium

58

Ce

140.12

thorium

90

Th

aseodym

neodymiur

promethiu

samarium

• Large electronic orbital angular momentum (L=5)

Anisotropic van der Waals interaction

 \bullet Large mass and large magnetic moment of 7 μ_{B}

Dipole-dipole interaction comparable to s-wave interaction

DIPOLE-DIPOLE INTERACTION (DDI)

$$U_{\rm dd} = \frac{C_{\rm dd}}{4\pi} \frac{1 - 3\cos^2\theta}{r^3} \quad \text{anisotropic} \\ \log range$$

Review articles:

T. Lahaye et al., Rep. Prog. Phys. 72, 126401 (2009).

M.A. Baranov, Phys. Rep. 464, 71 (2008).

thulium

Tm

endeleviu

101

Md

68

Er

100

Fm

ytterbium

70

Yb

173.04 nobelium

102

No

atoms

 $C_{dd} = \mu_0 \mu$

The extended Bose-Hubard model

O. Dutta et al., Reports on Progress in Physics 78, 066001 (2015)

C. Trefzger et al., Journal of Physics B: Atomic, Molecular and Optical Physics 44, 193001 (2011)

Anisotropic on-site interactions

Nearest-neighbour interactions

Basic introduction to Hubbard models

Interactions and tunneling in the BHM

Basic introduction into 1D systems

Strongly interacting Bosons in 1D systems

Inniseraitä

One-dimensional systems

HINIXEFALLE

One-dimensional systems

Interactions in one-dimensional systems

gamma parameter

$$\gamma = \frac{\text{interaction energy}}{\text{kinetic energy}} = \frac{mg_{1\text{D}}}{\hbar^2 n}$$

- g_{1D} coupling constant in 1D
- n 1D density in a uniform system

General properties

- weakly interacting system, γ<1
- strongly interacting system, γ>1
- counter-intuitive: more interacting for smaller density *n*

alpha parameter

Interaction parameter for system with harmonic confinement

$$\alpha = \frac{mg_{1\mathrm{D}} a_{||}}{\hbar^2}$$

 $a_{||}$ – harmonic oscillator length

replace distance between atoms (1/n) by harmonic oscillator length

$$a_{||} = \sqrt{\frac{\hbar}{m\omega_{||}}}$$

HINSEFECT

Phases in one-dimensional systems

Phases in one-dimensional systems

Phase diagram at T≠0

normal density distribution

$$\psi = \sqrt{n_0} e^{i\varphi(z,t)}$$

D.S. Petrov et al., J. Phys. IV France **1** (2007)

Lieb - Liniger model

Model: E. Lieb and W. Liniger, Phys. Rev. **130**, 1605 (1963)

- bosons in uniform 1D system
- repulsive contact potential
- TG gas is exactly solvable

Hamilton operator: $H = -\sum_{i} \frac{\partial^2}{\partial x_i^2} + c \gamma \sum_{\langle i,j \rangle} \delta(x_i - x_j)$ c - constant g - interaction strength $\gamma = \frac{m g_{\rm 1D}}{\hbar^2 n}$ kinetic energy interaction energy $\gamma = 0$ Ideal gas Tonks-Girardeau gas (TG) (non-interacting bosons) (non-interacting fermions) (hard spheres) $\gamma \to \infty$ g - parameter

Innix6raick

Interaction regimes of 1D quantum gases

One-dimensional systems

Scattering in quasi one-dimensional systems

M. Olshanii, PRL **81**, 938 (1998).

T. Bergeman et al., PRL 91,163201 (2003).

Hamiltonian: $H = H_{CM} + H_{rel}$

relative coordinates $H_{\rm rel} = \frac{p_z^2}{2\mu} + g_{\rm 3D} \delta(z, r_{\perp}) \frac{\partial}{\partial \mathbf{r}} \mathbf{r} + H_{\perp}(p_{\perp}, r_{\perp})$ longitudinal $\int \int transversal$ $H_{\rm 1D} = \frac{p_z^2}{2\mu} + g_{\rm 1D}(a_{\rm 3D}, \omega_{\perp}) \delta(z)$

Bose-Fermi mapping

Identical density profiles

Bose-Fermi mapping

Identical density profiles

HINSEFEILE

Extended Bose-Fermi mapping

Extended Bose-Fermi mapping

Matching wave functions on both sides of the confinement-induced

resonance

Super Tonks-Girardeau gas

Properties of the super Tonks-Girardeau gas

HINSEFALL

Interaction regimes of 1D quantum gases

Realization of a Tonks-Giradeau gas

Science 325, 1224 (2009)

Innsbruck group,

-20

0.5

1.0

ratio a_3/a_1

1.5

other approaches: B. Paredes et al., Nature 429, 277 (2004) N. Syassen et al., Science 320, 1329 (2008)

Realization of a Tonks-Giradeau gas

magnetic Feshbach resonances Cesium 133, F = 3, m_F = 3

Experimental results

Experimental realization

magnetic Feshbach resonances Cesium 133, F = 3, m_F = 3

hniseraide

Observation of the sTG gas

Collective oscillations

the oscillation frequency depends on the interaction regime.

HINIS FRIER

Observation of the sTG gas

Collective oscillations

the oscillation frequency depends on the interaction regime.

E. Haller *et al.,* Science **325** 1224 (2009)

Thanks for your attention!

Interested in joining for a Master / PhD thesis? => quantummatter.at