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THE CHALLENGE OF MANY-BODY QUANTUM SYSTEMS

Understand and design quantum materials
One of the biggest challenges
of 21st century quantum physics

—_—

Technological relevance

High-Tc superconductivity
Magnetism

Novel quantum sensors
Quantum technologies

Fundamental interest

Parameter changes

Benchmark theories

Often even “simple” models not solvable
Discern different effects
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1. INTRODUCTION

On the program it says this is a keynote speech—and I don’t know
what a keynote speech is. I do not intend in any way to suggest what should
be in this meeting as a keynote of the subjects or anything like that. I have
my own things to say and to talk about and there’s no implication that
anybody needs to talk about the same thing or anything like it. So what I
want to talk about is what Mike Dertouzos suggested that nobody would
talk about. I want to talk about the problem of simulating physics with
computers and I mean that in a specific way which I am going to explain.
The reason for doing this is something that I learned about from Ed
Fredkin, and my entire interest in the subject has been inspired by him. It
has to do with learning something about the possibilities of computers, and
also something about possibilities in physics. If we suppose that we know all
the physical laws perfectly, of course we don’t have to pay any attention to
computers. It’s interesting anyway to entertain oneself with the idea that
we’ve got something to learn about physical laws; and if I take a relaxed
view here (after all 'm here and not at home) I'll admit that we don’t
understand everything.

The first question is, What kind of computer are we going to use to
simulate physics? Computer theory has been developed to a point where it
realizes that it doesn’t make any difference; when you get to a universal
computer, it doesn’t matter how it’s manufactured, how it’s actually made.
Therefore my question is, Can physics be simulated by a universal com-
puter? I would like to have the elements of this computer locally intercon-
nected, and therefore sort of think about cellular automata as an example
(but I don’t want to force it). But 1 do want something involved with the
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R. P. Feynman’s vision
A quantum simulator to study
the properties of an another
quantum system



QUANTUM SIMULATION

Real materials Ultracold quantum matter
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Lattice constant: ~A Same quantum regime: Lattice constant: ~um
Ald >1
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Universality of quantum mechanics!
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OPTICAL LATTICES

VOLUME 81, NUMBER 15 PHYSICAL REVIEW LETTERS 12 OcToBER 1998

Optical lattices realize Bose-Hubbard Hamiltonian:

H = —JZblTbJ + Zeiﬁi + %Uzﬁz(ﬁz - 1)
i

Cold Bosonic Atoms in Optical Lattices
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The dynamics of an ultracold dilute gas of bosonic atoms in an optical lattice can be described
by a Bose-Hubbard model where the system parameters are controlled by laser light. We study the
continuous (zero temperature) quantum phase transition from the superfluid to the Mot insulator phase
induced by varying the depth of the optical potential, where the Mott insulator phase corresponds to
a commensurate filling of the lattice (“optical crystal”). Examples for formation of Mott structures
in optical lattices with a superimposed harmonic trap and in optical superlattices are presented.
[S0031-9007(98)07267-6]

Full parameter control:

PACS numbers: 32.80.Pj, 03.75.Fi, 71.35.Lk . Tu n n e | I n g

Optical lattices —arrays of microscopic potentials in-  the lattice, and thus represents an optical crystal with
duced by the ac Stark effect of interfering laser beams —  diagonal long range order with the period imposed by the .
can be used to confine cold atoms [1-7]. The quantized laser light. The nature of the MI phase is reflected in the [ ) | n te r a Ctl O n S
motion of such atoms is described by the vibrational mo- existence of a finite gap U in the excitation spectrum.
tion within an individual well and the tunneling between Our starting point is the Hamilton operator for bosonic
neighboring wells, leading to a spectrum describable as a  atoms in an external trapping potential ° D M &
band structure [3]. Near-resonant optical lattices, where i e n S I ty o8
dissipation associated with optical pumping produccs  H = f Srut) (——vz + Vo) + v,(x>)¢(x) S
cooling, have given filling factors of about one atom per n e
ten lattice sites [1,6]. Higher filling factors will require o RRRY

lower temperatures, and hence will also require mini-
mization of the optical dissipation. This can be achieved
in a far-detuned optical lattice (especially with blue detun-
ing), where photon scattering times of many minutes have
been demonstrated [2]. Thus the lattice then behaves as a
conservative potential, which could be loaded with a Bose
condensed atomic vapor [8,9], for which present densities
would correspond to tens of atoms per lattice site.

In this Letter we will study the dynamics of ultracold
bosonic atoms loaded in an optical lattice. We will show
that the dynamics of the bosonic atoms on the optical
lattices realizes a Bose-Hubbard model (BHM) [10-16],
describing the hopping of bosonic atoms between the
lowest vibrational states of the optical lattice sites, the

i
unique feature being the full control of the system’s ¥ 10 . e
by the laser and i / //m—:l Predlctlon.

The BHM predicts phase transition from a superfluid N
(SF) phase to a Mott insulator (MI) at low temperatures v, 10 . .
and with increasing ratio of the on site interaction U
e S e e g s | v } Superfluid-Mott insulator
clement J [10]. In the case of optical lattices this T
ratio can be varied by changing the laser intensity: with " > i

increasing depth of the optical potential the atomic wave

+ 2T [yt w0, (1)
i) m

with (x) a boson field operator for atoms in a given
internal atomic state, Vo(x) is the optical lattice poten-
tial, and V7 (x) describes an additional (slowly varying)
external trapping potential, e.g., a magnetic trap (see
Fig. 12). In the simplest case, the optical lattice poten-
tial has the form Vo(x) = 3_, Vjosin’(kx;) with wave
vectors k = 2a/A and A the wavelength of the laser
light, corresponding to a lattice period a = A/2. V is
proportional to the dynamic atomic polarizability times
the laser intensity. The interaction potential between the

Temperature

transition should be

function becomes more and more localized and the on  FIG. 1. (a) Realization of the BHM in an optical lattice (see Wi
site interaction increases, while at the same time the (V- The offset of the bottoms of the wells indicates  trapping s
tunneling matrix element is reduced. In the MI phase the  Powriad /7. (0) Plot of fhe scaled on sit iteraction U/ XL
elng 5 B i pha multiplied by a/a; (1) (solid line; axis on left-hand side of reac a e rorens 10
density (occupation number per site) is pinned at integer  graph) and J/Ex (dashed line; axis on right-hand side of graph) 10 BRRS
n =1,2,..., corresponding to a commensurate filling of as a function of Vo/Eg = Viy:0/Ex (3D lattice). RSS2
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SUPERFLUID-MOTT INSULATOR TRANSITION
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Hensch group (MPQ Munich)
M. Greiner et al., Nature 415, 39 (2002)
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1 Tools



SITE-RESOLVED READOUT
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Earlier work in groups:
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SITE-RESOLVED ADRESSING

Bloch group (MPQ Munich)
C. Weitenberg et al., Nature 471, 322 (2011)



SITE-RESOLVED ADRESSING
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ENTANGLEMENT AND STATE PURITY
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2 Bosonic quantum matter



BOSONIC MOTT INSULATORS

quantum phase
transition
Superfluid Mott insulator




BOSONIC MOTT INSULATORS

Bloch group (MPQ Munich)
J. Sherson et al., Nature 467, 68 (2010)
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PARTICLE-HOLE PAIRS
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Bloch group (MPQ Munich)
M. Endres et al., Science 334, 200 (2011)
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3 Fermionic quantum matter






D. Greif et al., Science 351, 953 (2016)



D. Greif et al., Science 351, 953 (2016)



QUANTUM MAGNETISM

Temperature
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ANTIFERROMAGNETIC ORDER

Temperature: T/t = 0.25
T/J=0.5

A. Mazurenko et al., Nature 545, 462 (2017)
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QUANTUM ANTIFERROMAGNET
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Temperature

DOPING AN ANTIFERROMAGNET

Strange metal

No numerics possible:
Many open questions
about the phase diagram
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Controlled doping

=> Gain microscopic understanding of
high-Tc superconductivity

Bloch group (MPQ Munich)
J. Koepsell et al., Nature 572, 358 (2019)
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4 Long-range interacting systems



DIPOLAR ATOMS
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DIPOLAR MOLECULES

Permanent electric dipole moment
-> kHz interactions over neighboring sites
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17.6 um

Bloch group (MPQ Munich)

T. Fukuhara et al., Nature Phys. 9, 235 (2013)

RYDBERG INTERACTIONS
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5 Recent trends



QUANTUM INFORMATION
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SUMMARY
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Study strongly correlated systems

Tunable parameters AND microscopic control

Poor electron-qubit mapping
in quantum computers

Need for controlled fermionic systems
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