Ultracold molecules

Dr. Alessandro Zenesini
CNR-INO
Pitaevskii BEC Center, University of Trento

Introductory Course on Ultracold Quantum Gases 2023, Innsbruck

Life is a matter of interactions

- 2: Basic concepts on two-body interactions
- Scattering length
- Feshbach resonance
- 1+1: Let's stay together
- How to cool them
- Basic experiment
- 3: Good/Bad things come in threes
- 4 and more: It's time to party

0

Two-body interactions

Elastic collision
Energy conserved
Total angular momentum conserved

Inelastic collision

Two-body interactions

Elastic collision
Energy conserved
Total angular momentum conserved

Symmetric wave-function

Inelastic collision

00

Two-body interactions

Elastic collision
Energy conserved
Total angular momentum conserved

Inelastic collision

Symmetric wave-function

Anti-symmetric wave-function

Scattering length

The scattering length is classically the size of the target

Quantum: Scattering between waves
Outgoing scattered wave decomposed in spherical harmonics

For example:
symmetric target -> symmetric output

Scattering length

The scattering length is classically the size of the target

Quantum: Scattering between waves
Outgoing scattered wave decomposed in spherical harmonics

For example:
symmetric target -> symmetric output

Identical particle
Symmetric wave-function

Scattering length

Identical particle
Symmetric wave-function

The scattering length is classically the size of the target

Quantum: Scattering between waves Outgoing scattered wave decomposed in spherical harmonics

For example:
symmetric target -> symmetric output

[^0]

Identical particle
Anti-symmetric wave-function
Only p-wave and odd

Scattering length

The scattering length is classically the size of the target

Quantum: Scattering between waves
Outgoing scattered wave decomposed in spherical harmonics

For example:
symmetric target -> symmetric output

Identical particle
Symmetric wave-function

Identical particle Anti-symmetric wave-function

Distinct particle Whatever wave-function
s-wave and all

Interaction potential, the phase shift and the scattering length

Interaction potential, the phase shift and the scattering length

Interaction potential, the phase shift and the scattering length

$$
a=-\lim _{k \rightarrow 0} \frac{\delta_{0}(k)}{k}
$$

The role of the molecular potential

Interaction potential

Molecular potential

Which is the connection between bound states and scattering length?

The role of the molecular potential

Interaction potential

Molecular potential

Which is the connection between bound states and scattering length?

The role of the molecular potential

Interaction potential

Molecular potential

Which is the connection between bound states and scattering length?

The role of the molecular potential

Interaction potential
Molecular potential

Which is the connection between bound states and scattering length?

The role of the molecular potential

Interaction potential =

Molecular potential

Which is the connection between bound states and scattering length?

Scattering length tuning: Feshbach resonance

$$
a(B)=a_{\mathrm{bg}}\left(1-\frac{\Delta}{B-B_{0}}\right)
$$

Feshbach resonances in ultracold gases
Cheng Chin, Rudolf Grimm, Paul Julienne, and Eite Tiesinga
Rev. Mod. Phys. 82, 1225 - Published 29 April 2010

Scattering length tuning: Feshbach resonance

$$
a(B)=a_{\mathrm{bg}}\left(1-\frac{\Delta}{B-B_{0}}\right)
$$

Feshbach resonances in ultracold gases
Cheng Chin, Rudolf Grimm, Paul Julienne, and Eite Tiesinga
Rev. Mod. Phys. 82, 1225 - Published 29 April 2010

Scattering length tuning: Feshbach resonance

$$
a(B)=a_{\mathrm{bg}}\left(1-\frac{\Delta}{B-B_{0}}\right)
$$

Feshbach resonances in ultracold gases
Cheng Chin, Rudolf Grimm, Paul Julienne, and Eite Tiesinga
Rev. Mod. Phys. 82, 1225 - Published 29 April 2010

Scattering length tuning: Feshbach resonance

Cesium case in the lowest hyperfine state

Considering only closed channels with same angular momentum of the entrance one

Scattering length tuning: Feshbach resonance

Cesium case in the lowest hyperfine state

Considering only closed channels with same angular momentum of the entrance one

Considering also closed channels with different angular momentum compared to the entrance one

Remember/1: the good and the bad

For each collision there will be:

Elastic collision rate (good for evaporation) Inelastic collision rate (not necessary bad)

Elastic collision Energy conserved

Inelastic collision Internal energy converted to kinetic energy (or viceversa)

Remember/2: Fermions

Remember/2: Fermions

Remember/2: Fermions

Identical Fermions do not come enough close to see each other below some temperature: No collisions, no termalization

Remember/2: Fermions

Identical Fermions do not come enough close to see each other below some temperature: No collisions, no termalization

Mixture of distinguishable fermion or together with a boson to allow evaporation

There is even more about collisions

- Scattering in pancakes and cigars (see Laurianne lecture)
- Dipolar gases (see Francesca lecture):
- beyond van der Waals interactions: Magnetic and electric dipoles
- Rydberg atoms (see Hannes lecture):
- Interactions between
- a neutral atom and an ion
- ground state atom and a Rydberg atoms

Atomic spectra

Atomic spectra

Atomic spectra

Alkali-earth

A diatomic molecule is an atom too many

Arthur Leonard Schawlow

1+1

(2)

A diatomic molecule is an atom too many

A diatomic molecule is an atom too many

Arthur Leonard Schawlow

$1+1$

[^1]
A diatomic molecule is an atom too many

Arthur Leonard Schawlow

- 00
- No closed transition for laser cooling

A diatomic molecule is an atom too many

- No closed transition for laser cooling

Cooling atoms and glueing

Cooling atoms and glueing

Weakly bound Feshbach molecules

1+1

- good for understanding long range collisions, temperature effects, BEC-BCS...

Weakly bound Feshbach molecules

1+1

- good for understanding long range collisions, temperature effects, BEC-BCS...

Weakly bound Feshbach molecules

1+1

- good for understanding long range collisions, temperature effects, BEC-BCS...

Weakly bound Feshbach molecules

1+1

- good for understanding long range collisions, temperature effects, BEC-BCS...

Weakly bound Feshbach molecules

1+1

- good for understanding long range collisions, temperature effects, BEC-BCS...

Why to go to the ground state?

- Stability of ground state molecules: We want to reach quantum degeneracy as for atoms

$1+1$

- Very large dipole moment coming from electron charge distribution:
Long range dipole interactions
- Transfer from the weakly bound state to the ground state.
- Challenges: - From very large to very small
- Stay cold
- THz Jump

> (no light, no MW, no RF)

- Preserve quantum numbers
- Choice not chemically reacting molecules

STIRAP

- STImulated Rapid Adiabatic Passage

Coherent transfer from one state to a another.
Anti-intuitive sequence of pulses (to adiabatically rotate a dark state to the target one)

Bergmann:

"It's like when you have to take a bus to go to the airport, but the fastest way to reach the final destination is that the plane has to leave before you take the bus"

Stimulated Raman adiabatic passage in physics, chemistry, and
beyond

STIRAP

- STImulated Rapid Adiabatic Passage

Coherent transfer from one state to a another.
Anti-intuitive sequence of pulses (to adiabatically rotate a dark state to the target one)

Bergmann:

"It's like when you have to take a bus to go to the airport, but the fastest way to reach the final destination is that the plane has to leave before you take the bus"

Stimulated Raman adiabatic passage in physics, chemistry, and
beyond

STIRAP

- Two (or more) very stable laser (to remain in the dark state)
- Good spatial overlap between initial and intermediate and final state

$1+1$

- Good mixing of quantum numbers

Implemented with 4 photons (Cs in IBK)
 and in many other atomic systems...

Experiments with molecules

- Changing chemical reaction speed with an E and B field
- Distinguishable fermions, Bosons

Repulsive side-by side collisions

- Study of chemical reactions

Experiments with molecules

- Changing chemical reaction speed with an E and B field
- Distinguishable fermions, Bosons

Repulsive side-by side collisions

- Study of chemical reactions

Experiments with molecules

- Changing chemical reaction speed with an E and B field
- Distinguishable fermions, Bosons

Repulsive side-by side collisions

- Study of chemical reactions
- Recently evidences of degenerate fermi gases of KRb (Jila) and NaK (Munich)
- Recent development: Molecules in tweezers for quantum computation, analysis of losses with mass spectrometer...

Tuning knobs for molecules

Observation of magnetically tunable Feshbach resonances in ultracold ${ }^{23} \mathrm{Na}^{40} \mathrm{~K}+{ }^{40} \mathrm{~K}$ collisions

SCIENCE • 18 Jan $2019 \cdot$ Vol 363, Issue $6424 \cdot$ pp. $261-264 \cdot$ Dol: 10.1126/science.aau5322

$1+1$

Coherent Microwave Control of Ultracold ${ }^{23} \mathrm{Na}^{40} \mathrm{~K}$ Molecules
Sebastian A. Will, Jee Woo Park, Zoe Z. Yan, Huanqian Loh, and Martin W. Zwierlein Phys. Rev. Lett. 116, 225306 - Published 3 June 2016

Evaporation of microwave-shielded polar molecules to quantum degeneracy

Advance in cooling of large molecules

Cooling

$1+1$

Chemistry

(Prepare molecules)

$$
\begin{aligned}
& \mathrm{T}=1 \mathrm{mK} \\
& \mathrm{n} \sim 10^{8} / \mathrm{cm}^{3}
\end{aligned}
$$

Stark decelerator: very fast ground state molecule thanks to buffer gas cooling, but one have to brake them...

- Alkali-like molecules (one electron localised on one side)

(f)

(c)

(g)

Molecular Asymmetry and Optical Cycling: Laser Cooling Asymmetric Top Molecules

[^2]
Advance in cooling of large molecules

Cooling

$1+1$

Chemistry

(Prepare molecules)

$$
\begin{aligned}
& \mathrm{T}=1 \mathrm{mK} \\
& \mathrm{n} \sim 10^{8} / \mathrm{cm}^{3}
\end{aligned}
$$

Stark decelerator: very fast ground state molecule thanks to buffer gas cooling, but one have to brake them...

- Alkali-like molecules (one electron localised on one side)

(f)

(c)

(g)

Molecular Asymmetry and Optical Cycling: Laser Cooling Asymmetric Top Molecules

[^3]0
2

3

000

Three-body: The origin of the problem

- Classical problem has solutions only for special cases (one of the participant is small, Lagrange points)
- Quantum case: ${ }^{3} \mathrm{He}$, deuteron and adrons. No tuning knobs

Three-body: The origin of the problem

- Classical problem has solutions only for special cases (one of the participant is small, Lagrange points)
- Quantum case: ${ }^{3} \mathrm{He}$, deuteron and adrons. No tuning knobs

Efimov state

Efimov considered very large scattering length

Efimov state

Efimov considered very large scattering length

Efimov state

0

 3

Efimov considered very large scattering length

Efimov state

2

Efimov considered very large scattering length

\square

Long lasting search in helium droplets, halo nuclei...

Efimov state

Long lasting search in helium droplets, halo nuclei...

Efimov considered very large scattering length

Three-body states and losses

- Efimov state is behind a centrifugal barrier
- We can tune entrance by changing the scattering length (i.e. the energy of the entering atoms)
- What enters decay fast into low lying molecular state

Three-body states and losses

- Efimov state is behind a centrifugal barrier
- We can tune entrance by changing the scattering length (i.e. the energy of the entering atoms)
- What enters decay fast into low lying molecular state

Three-body states and losses

- Efimov state is behind a centrifugal barrier
- We can tune entrance by changing the scattering length (i.e. the energy of the entering atoms)
- What enters decay fast into low lying molecular state

Three-body states and losses

Innsbruck 2006

2+1 and Efimov state association

2+1 and Efimov state association

Universality

Universality

Universality

- Different atoms

Cold atoms and droplets

(へə) イб́əəиə

Extension to four- and more body states

- Immanuel Kant: At dinner, never more than the Muses (9) or less than the Fates (3)
- Interest to connect few to many boys state
- Connection to high energy physics (tetra- and penta-quark)

- Also five observed!

Thanks

[^0]: Only s-wave and even

[^1]: + couplings

[^2]: Benjamin L. Augenbraun ©, ${ }^{1,2, *}$ John M. Doyle, ${ }^{1,2}$ Tanya Zelevinsky© ${ }^{3}{ }^{3}$ and Ivan Kozyryev ${ }^{3, \dagger}$

[^3]: Benjamin L. Augenbraun ©, ${ }^{1,2, *}$ John M. Doyle, ${ }^{1,2}$ Tanya Zelevinsky© ${ }^{3}{ }^{3}$ and Ivan Kozyryev ${ }^{3, \dagger}$

